import org.apache.commons.cli.*;
public class CommandLineOptions {
public static void main(String[] args) {
// Define the options
Options options = new Options();
// Add options
options.addOption("input", true, "Path to the input data file"); // Required input file
options.addOption("output", true, "Path to the output file"); // Required output file
options.addOption("learningRate", true, "Learning rate for the algorithm"); // Required learning rate
options.addOption("epochs", false, "Number of training epochs"); // Optional epochs
options.addOption("batchSize", false, "Batch size for mini-batch gradient descent"); // Optional batch size
options.addOption("modelType", false, "Type of model to use (e.g., linear, neural)"); // Optional model type
options.addOption("verbose", true, "Enable verbose output"); // Required verbose flag
// Parse the command-line arguments
CommandLineParser parser = new DefaultParser();
CommandLine cmd = parser.parse(args);
// Access the option values
String inputPath = cmd.getOptionValue("input");
String outputPath = cmd.getOptionValue("output");
double learningRate = Double.parseDouble(cmd.getOptionValue("learningRate"));
int epochs = (cmd.getOptionValue("epochs") != null) ? Integer.parseInt(cmd.getOptionValue("epochs")) : 10; //default to 10 if not specified
int batchSize = (cmd.getOptionValue("batchSize") != null) ? Integer.parseInt(cmd.getOptionValue("batchSize")) : 32; //default to 32 if not specified
String modelType = cmd.getOptionValue("modelType");
boolean verbose = cmd.getOptionValue("verbose").equals("true");
// Print the values (for demonstration)
System.out.println("Input Path: " + inputPath);
System.out.println("Output Path: " + outputPath);
System.out.println("Learning Rate: " + learningRate);
System.out.println("Epochs: " + epochs);
System.out.println("Batch Size: " + batchSize);
System.out.println("Model Type: " + modelType);
System.out.println("Verbose: " + verbose);
//Further processing based on the options goes here.
}
}
Add your comment