import pandas as pd
def merge_date_datasets(df1, df2, date_column1, date_column2, merge_type='inner'):
"""
Merges two pandas DataFrames based on date columns, handling edge cases.
Args:
df1 (pd.DataFrame): The first DataFrame.
df2 (pd.DataFrame): The second DataFrame.
date_column1 (str): Name of the date column in df1.
date_column2 (str): Name of the date column in df2.
merge_type (str, optional): Type of merge ('inner', 'outer', 'left', 'right'). Defaults to 'inner'.
Returns:
pd.DataFrame: The merged DataFrame. Returns None if either dataframe is invalid.
Raises:
TypeError: if df1 or df2 are not pandas DataFrames.
ValueError: if date_column1 or date_column2 are not strings.
"""
if not isinstance(df1, pd.DataFrame) or not isinstance(df2, pd.DataFrame):
raise TypeError("df1 and df2 must be pandas DataFrames.")
if not isinstance(date_column1, str) or not isinstance(date_column2, str):
raise ValueError("date_column1 and date_column2 must be strings.")
# Convert date columns to datetime objects, handling potential errors
try:
df1[date_column1] = pd.to_datetime(df1[date_column1], errors='coerce') #coerce invalid values to NaT
df2[date_column2] = pd.to_datetime(df2[date_column2], errors='coerce') #coerce invalid values to NaT
except KeyError as e:
print(f"Error: Date column not found: {e}")
return None
except Exception as e:
print(f"Error converting date columns: {e}")
return None
#Handle cases where date columns might be empty
if df1[date_column1].empty or df2[date_column2].empty:
print("Warning: One or both date columns are empty. Returning empty dataframe")
return pd.DataFrame() #Return empty dataframe
# Perform the merge
try:
merged_df = pd.merge(df1, df2, left_on=date_column1, right_on=date_column2, how=merge_type)
except Exception as e:
print(f"Error during merge: {e}")
return None
return merged_df
Add your comment